บทที่ 3 คลื่นแม่เหล็กไฟฟ้า




    บทที่ 3 คลื่นแม่เหล็กไฟฟ้า

     เกิดจากการรบกวนทางแม่เหล็กไฟฟ้า (Electromagnetic disturbance) โดยการทำให้สนามไฟฟ้าหรือสนามแม่เหล็กมีการเปลี่ยนแปลง เมื่อสนามไฟฟ้ามีการเปลี่ยนแปลงจะเหนี่ยวนำให้เกิดสนามแม่เหล็ก หรือถ้าสนามแม่เหล็กมีการเปลี่ยนแปลงก็จะเหนี่ยวนำให้เกิดสนามไฟฟ้า

คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็กที่มีการสั่นในแนวตั้งฉากกัน และอยู่บนระนาบตั้งฉากกับทิศการเคลื่อนที่ของคลื่น
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เคลื่อนที่โดยไม่อาศัยตัวกลาง จึงสามารถเคลื่อนที่ในสุญญากาศ
ได
     สเปกตรัม (Spectrum) ของคลื่นแม่เหล็กไฟฟ้าจะประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นแตกต่างกัน ซึ่งครอบคลุมตั้งแต่ คลื่นแสงที่ตามองเห็น อัลตราไวโอเลต อินฟราเรด คลื่นวิทยุ โทรทัศน์ ไมโครเวฟ รังสีเอกซ์ รังสีแกมมา เป็นต้นดังนั้นคลื่นแม่เหล็กไฟฟ้า จึงมีประโยชน์มากในการสื่อสารและโทรคมนาคม และทางการแพทย์


สมบัติของคลื่นแม่เหล็กไฟฟ้า
1. ไม่ต้องใช้ตัวกลางในการเคลื่อนที่
2. อัตราเร็วของคลื่นแม่เหล็กไฟฟ้าทุกชนิดในสุญญากาศเท่ากับ 3x108m/s ซึ่งเท่ากับ อัตราเร็วของแสง3. เป็นคลื่นตามขวาง4. ถ่ายเทพลังงานจากที่หนึ่งไปอีกที่หนึ่ง5. ถูกปล่อยออกมาและถูกดูดกลืนได้โดยสสาร6. ไม่มีประจุไฟฟ้า7. คลื่นสามารถแทรกสอด สะท้อน หักเห และเลี้ยวเบนได้



ชนิดของคลื่นแม่เหล็กไฟฟ้า ได้แก่


1. คลื่นวิทยุ

คลื่นวิทยุมีความถี่ช่วง 104 - 109 Hz( เฮิรตซ์ ) ใช้ในการสื่อสาร คลื่นวิทยุมีการส่งสัญญาณ ระบบคือ

1.1 ระบบเอเอ็ม (A.M. = amplitude modulation)
ระบบเอเอ็ม มีช่วงความถี่ 530 - 1600 kHz( กิโลเฮิรตซ์ ) สื่อสารโดยใช้คลื่นเสียงผสมเข้าไปกับคลื่นวิทยุเรียกว่า "คลื่นพาหะโดยแอมพลิจูดของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง
ในการส่งคลื่นระบบ A.M. สามารถส่งคลื่นได้ทั้งคลื่นดินเป็นคลื่นที่เคลื่อนที่ในแนวเส้นตรงขนานกับผิวโลกและคลื่นฟ้าโดยคลื่นจะไปสะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แล้วสะท้อนกลับลงมา จึงไม่ต้องใช้สายอากาศตั้งสูงรับ

1.2 ระบบเอฟเอ็ม (F.M. = frequency modulation)
ระบบเอฟเอ็ม มีช่วงความถี่ 88 - 108 MHz (เมกะเฮิรตซ์) สื่อสารโดยใช้คลื่นเสียงผสมเข้ากับคลื่นพาหะ โดยความถี่ของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง
ในการส่งคลื่นระบบ F.M. ส่งคลื่นได้เฉพาะคลื่นดินอย่างเดียว ถ้าต้องการส่งให้คลุมพื้นที่ต้องมีสถานีถ่ายทอดและเครื่องรับต้องตั้งเสาอากาศสูง ๆ รับ



2. คลื่นโทรทัศน์และไมโครเวฟคลื่นโทรทัศน์และไมโครเวฟมีความถี่ช่วง 108 - 1012 Hz มีประโยชน์ในการสื่อสาร แต่จะไม่สะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ในการถ่ายทอดสัญญาณโทรทัศน์จะต้องมีสถานีถ่ายทอดเป็นระยะ ๆ เพราะสัญญาณเดินทางเป็นเส้นตรง และผิวโลกมีความโค้ง ดังนั้นสัญญาณจึงไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตรบนผิวโลก อาจใช้ไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียม แล้วให้ดาวเทียมนำสัญญาณส่งต่อไปยังสถานีรับที่อยู่ไกล ๆเนื่องจากไมโครเวฟจะสะท้อนกับผิวโลหะได้ดี จึงนำไปใช้ประโยชน์ในการตรวจหาตำแหน่งของอากาศยาน เรียกอุปกรณ์ดังกล่าวว่า เรดาร์ โดยส่งสัญญาณไมโครเวฟออกไปกระทบอากาศยาน และรับคลื่นที่สะท้อนกลับจากอากาศยาน ทำให้ทราบระยะห่างระหว่างอากาศยานกับแหล่งส่งสัญญาณไมโครเวฟได้

3. รังสีอินฟาเรด (infrared rays)
รังสีอินฟาเรดมีช่วงความถี่ 1011 - 1014 Hz หรือความยาวคลื่นตั้งแต่ 10-3 - 10-6 เมตร ซึ่งมีช่วงความถี่คาบเกี่ยวกับไมโครเวฟ รังสีอินฟาเรดสามารถใช้กับฟิล์มถ่ายรูปบางชนิดได้ และใช้เป็นการควบคุมระยะไกลหรือรีโมทคอนโทรลกับเครื่องรับโทรทัศน์ได้

4. แสง (light)
แสงมีช่วงความถี่ 1014Hz หรือความยาวคลื่น 4x10-7 - 7x10-7 เมตร เป็นคลื่นแม่เหล็กไฟฟ้าที่ประสาทตาของมนุษย์รับได้ สเปคตรัมของแสงสามารถแยกได้ดังนี้

สี
ความยาวคลื่น (nm)
ม่วง
380-450
น้ำเงิน
450-500
เขียว
500-570
เหลือง
570-590
แสด
590-610
แดง
610-760

5. รังสีอัลตราไวโอเลต (Ultraviolet rays)
รังสีอัลตราไวโอเลต หรือ รังสีเหนือม่วง มีความถี่ช่วง 1015 - 1018 Hz เป็นรังสีตามธรรมชาติส่วนใหญ่มาจากการแผ่รังสีของดวงอาทิตย์ ซึ่งทำให้เกิดประจุอิสระและไอออนในบรรยากาศชั้นไอโอโนสเฟียร์ รังสีอัลตราไวโอเลต สามารถทำให้เชื้อโรคบางชนิดตายได้ แต่มีอันตรายต่อผิวหนังและตาคน


6. รังสีเอกซ์ (X-rays)
รังสีเอกซ์ มีความถี่ช่วง 1016 - 1022 Hz มีความยาวคลื่นระหว่าง 10-8 - 10-13 เมตร ซึ่งสามารถทะลุสิ่งกีดขวางหนา ๆ ได้ หลักการสร้างรังสีเอกซ์คือ การเปลี่ยนความเร็วของอิเล็กตรอน มีประโยชน์ทางการแพทย์ในการตรวจดูความผิดปกติของอวัยวะภายในร่างกาย ในวงการอุตสาหกรรมใช้ในการตรวจหารอยร้าวภายในชิ้นส่วนโลหะขนาดใหญ่ ใช้ตรวจหาอาวุธปืนหรือระเบิดในกระเป๋าเดินทาง และศึกษาการจัดเรียงตัวของอะตอมในผลึก

7. รังสีแกมมา (-rays)รังสีแกมมามีสภาพเป็นกลางทางไฟฟ้ามีความถี่สูงกว่ารังสีเอกซ์ เป็นคลื่นแม่เหล็กไฟฟ้าที่เกิดจากปฏิกิริยานิวเคลียร์และสามารถกระตุ้นปฏิกิริยานิวเคลียร์ได้ มีอำนาจทะลุทะลวงสูง

ความสัมพันธ์ระหว่าง ความยาวคลื่น (Wavelength) และ ความถี่ (Frequency)


     วัตถุทุกชนิดที่มีอุณภูมิสูงกว่า 0 เคลวิน (-273°C) มีพลังงานภายในตัว และมีการแผ่รังสีคลื่นแม่เหล็กไฟฟ้า ความยาวของคลื่นแม่เหล็กไฟฟ้าแปรผกผันกับอุณหภูมิ มิใช่มีเพียงสิ่งที่มีอุณหภูมิสูง ดังเช่น ดวงอาทิตย์ และไส้หลอดไฟฟ้า จึงมีการแผ่รังสี หากแต่สิ่งที่มีอุณหภูมิต่ำดังเช่น ร่างกายมนุษย์ และน้ำแข็ง ก็มีการแผ่รังสีเช่นกัน เพียงแต่ตาของเรามองไม่เห็น

     พิจารณาภาพที่ 4 เมื่อเราให้พลังงานความความร้อนแก่แท่งโลหะ เมื่อมันเริ่มร้อน มันจะเปล่งแสงสีแดง (สามารถเห็นได้จากขดลวดของเตาไฟฟ้า) เมื่อมันร้อนมากขึ้น มันจะเปล่งแสงสีเหลือง และในที่สุดมันจะเปล่งแสงสีขาวอมน้ำเงิน

 พิจารณาเส้นกราฟ จะเห็นว่า



- เมื่อแท่งโลหะมีอุณหภูมิ 3,000 K ความยาวคลื่นสูงสุดที่ยอดกราฟจะอยู่ที่ 1000 nm (นาโนเมตร) ซึ่งตรงกับย่านรังสีอินฟราเรด ซึ่งสายตาเราไม่สามารถมองเห็นรังสีชนิดนี้ เราจึงเห็นแท่งโลหะแผ่แสงสีแดง เนื่องจากเป็นความยาวคลื่นที่ต่ำที่สุดแล้ว ที่เราสามารถมองเห็นได้- เมื่อแท่งโลหะมีอุณหภูมิ 5,000 K ความยาวคลื่นสูงสุดที่ยอดกราฟจะอยู่ที่ 580 nm เราจึงมองเห็นแท่งโลหะเปล่งแสงสีเหลือง

- เมื่อแท่งโลหะมีอุณหภูมิ 10,000 K ความยาวคลื่นสูงสุดที่ยอดกราฟจะอยู่ที่ 290 nm ซึ่งตรงกับย่านรังสี อุลตราไวโอเล็ก ซึ่งสายตาเราไม่สามารถมองเห็นรังสีชนิดนี้ เราจึงเห็นแท่งโลหะแผ่แสงสีม่วง เนื่องจากเป็นความยาวคลื่นที่สูงที่สุดแล้ว ที่เราสามารถมองเห็นได้








 ตัวอย่างนี้แสดงให้เห็นว่า วัตถุร้อน มีพลังงานสูง และแผ่รังสีคลื่นสั้น ส่วนวัตถุเย็น มีพลังงานต่ำ แผ่รังสีคลื่นยาว

กฎของเวน (Wien’s Law): ความสัมพันธ์ระหว่างความยาวคลื่น และอุณหภูมิ


   วัตถุทุกชนิดที่มีอุณภูมิสูงกว่า 0 เคลวิน (-273°C) ย่อมมีพลังงานภายในตัว และมีการแผ่รังสีคลื่นแม่เหล็กไฟฟ้า ความยาวของคลื่นแม่เหล็กไฟฟ้าแปรผกผันกับอุณหภูมิ (วัตถุร้อน มีพลังงานสูง และแผ่รังสีคลื่นสั้น, วัตถุเย็น มีพลังงานต่ำ แผ่รังสีคลื่นยาว) ในปี ค.ศ.1893 นักฟิสิกส์ชาวเยอรมันชื่อ วิลเฮล์ม เวน (Wilhelm Wien) ได้ค้นพบความสัมพันธ์ระหว่างคลื่นแม่เหล็กไฟฟ้าและความร้อน
max = 0.0029 / T

                 max      = ความยาวคลื่นเข้มสุด มีหน่วยเป็นเมตร (m)
              T           = อุณหภูมิของวัตถุ มีหน่วยเป็นเคลวิน (K)
              T           = อุณหภูมิของวัตถุ มีหน่วยเป็นเคลวิน (K)
           ตัวอย่างที่ 1 แสดงให้เห็นว่า เราสามารถคำนวณหาอุณหภูมิพื้นผิวของดาวได้ ถ้าเราทราบความยาวคลื่นเข้มสุด ที่ดาวนั้นแผ่รังสีออกมา


ตัวอย่างที่ 1: ดวงอาทิตย์แผ่รังสีที่มีความยาวคลื่นเข้มสุด 500 นาโนเมตร อยากทราบว่า ดวงอาทิตย์มีอุณหภูมิพื้นผิวเท่าไร         max   = 0.0029 / T           T      = 0.0029 / max                  = 0.0029 / 500 x 10-9 m                  = 5,800 K


กฎของแพลงก์ (Plank’s Law)

          โฟตอนเป็นอนุภาคของแสง เคลื่อนที่ด้วยความเร็ว 300,000,000 เมตร/วินาที พลังงานของโฟตอนแปรผันตามความถี่ แต่แปรผกผันกับความยาวคลื่น โฟตอนของคลื่นสั้นมีพลังงานมากกว่าโฟตอนของคลื่นยาว
E = hfE = hc

          พลังงานของโฟตอน    = h x ความถี่
                                       = h x ความเร็วแสง / ความยาวคลื่น
                                       = h x ความเร็วแสง / ความยาวคลื่น     ความยาวคลื่น () = ระยะห่างระหว่างยอดคลื่น มีหน่วยเป็นเมตร (m)     ความถี่ (f) = จำนวนคลื่นที่เคลื่อนที่ผ่านจุดที่กำหนด ในระยะเวลา 1 วินาที มีหน่วยเป็นเฮิรทซ์ (Hz)     ค่าคงที่ของแพลงก์ (h) = 6.6 x 10-34 จูล วินาที (J.s)
          ตัวอย่างที่ 3 แสดงให้เห็นว่า โฟตอนของแสงสีม่วงซึ่งมีความยาวคลื่น 400 นาโนเมตร มีพลังานสูงกว่า โฟตอนของแสงสีแดงซึ่งมีความยาวคลื่น 700 นาโนเมตร ถึง 1.75 เท่า


ตัวอย่างที่ 2: โฟตอนของแสงสีม่วงมีความยาวคลื่น 400 นาโนเมตร โฟตอนของแสงสีแดงมีความยาวคลื่น 700 นาโนเมตร โฟตอนทั้งสองมีพลังงานต่างกันอย่างไรEviolet = hc / = [6.6 x 10-34 J.s] [3 x 108 m s-1M / 400 x 10-9 nm       = 4.95 x 10-19 จูลEred   = hc /  = [6.6 x 10-34 J.s] [3 x 108 m s-1] / 700 x 10-9 nm       = 2.83 x 10-19 จูลโฟตอนของแสงสีม่วง มีพลังงานสูงกว่า โฟตอนของแสงสีแดง 1.75 เท่า


กฎของสเตฟาน–โบลทซ์มานน์ (Stefan-Boltzmann’s Law)

          ความเข้มของพลังงาน (Energy Flux) แปรผันตามค่ายกกำลังสี่ของอุณหภูมิ มีหน่วยเป็น จูล / ตารางเมตร วินาที หรือ วัตต์ / ตารางเมตร
F    =     T4
          F = ความเข้มของพลังงาน มีหน่วยเป็นวัตต์ / ตารางเมตร (W m-2)
           = 5.67 x 10-8 วัตต์ / ตารางเมตร K4 (W m-2 K-4)
          T = อุณหภูมิของวัตถุ มีหน่วยเป็นเคลวิน (K)
           = 5.67 x 10-8 วัตต์ / ตารางเมตร K4 (W m-2 K-4)          T = อุณหภูมิของวัตถุ มีหน่วยเป็นเคลวิน (K)
          ถ้าเราทราบว่า ความยาวคลื่นเข้มสุดที่ดาวแผ่รังสีออกมา เราก็จะทราบอุณหภูมิพื้นผิวของดาว (ดังตัวอย่างที่ 1) และเมื่อเราทราบอุณหภูมิพื้นผิวของดาว เราก็จะทราบว่า พลังงานที่ดาวแผ่ออกมานั้นมีความเข้มเท่าไร (ดังตัวอย่างที่ 3)

ตัวอย่างที่ 3: พื้นผิวของดวงอาทิตย์มีอุณหภูมิเฉลี่ย 5,800 K มีความเข้มของพลังงานเท่าไร    F = T4       = (5.67 x 10-8 วัตต์ / ตารางเมตร K4) (5800 K)4       = (5.67 x 10-8 วัตต์ / ตารางเมตร) (1.13 x 1015)       = 64,164,532 วัตต์ / ตารางเมตร

ความสัมพันธ์ระหว่างพลังงานและระยะทาง

          ในการแผ่รังสี คลื่นแม่เหล็กไฟฟ้าแผ่ออกจากจุดกำเนิดทุกทิศทุกทาง เปรียบเสมือนทรงกลมที่มีจุดกำเนิดเป็นจุดศูนย์กลาง โดยเมื่อพลังงานแพร่ออกไป ความเข้มของพลังงานจะลดลงไปเท่ากับ หน่วยของระยะทางยกกำลังสอง ดังที่แสดงในภาพที่ 2

ภาพที่ 2 กฏของสเตฟาน–โบลทซ์มานน์

กฎระยะทางผกผันกำลังสอง

F1 / F2 = (D2 / D1)2

          F1 = ความเข้มของพลังงาน ณ ระยะทางที่ 1
          F2 = ความเข้มของพลังงาน ณ ระยะทางที่ 2
          D1 = ระยะทางจากจุดกำเนิดถึงระยะทางที่ 1
          D2 = ระยะทางจากจุดกำเนิด ถึงระยะทางที่ 2
          F2 = ความเข้มของพลังงาน ณ ระยะทางที่ 2          D1 = ระยะทางจากจุดกำเนิดถึงระยะทางที่ 1          D2 = ระยะทางจากจุดกำเนิด ถึงระยะทางที่ 2
          ตัวอย่างที่ 4  แสดงให้เห็นว่า ดวงอาทิตย์มีรัศมี 694 ล้านเมตร พื้นผิวของดวงอาทิตย์แผ่รังสีด้วยความเข้ม 64 ล้านวัตต์ / ตารางเมตร แสงอาทิตย์เดินทางมายังโลกเป็นระยะทาง 149.6 ล้านกิโลเมตร ซึ่งมีระยะห่างมากกว่ารัศมีของดาวอาทิตย์ 216 เท่า ทำให้แสงอาทิตย์มีความเข้มน้อยลง (216)2 เท่า ดังนั้น แสงอาทิตย์ตกกระทบบรรยากาศชั้นบนของโลกด้วยความเข้มเพียง 1,370 วัตต์/ตารางเมตร

ตัวอย่างที่ 4: พลังงานที่พื้นผิวของดวงอาทิตย์มีความเข้ม 64 ล้านวัตต์ / ตารางเมตร อยากทราบว่า พลังงานจากดวงอาทิตย์ที่ตกกระทบบรรยากาศชั้นบนของโลก จะมีความเข้มเท่าไร    F1 = ความเข้มของพลังงาน ณ บรรยากาศโลกชั้นบน    F2 = ความเข้มของพลังงาน ณ ผิวดวงอาทิตย์     = 64,000,000 วัตต์/ตารางเมตร    D1 = รัศมีของวงโคจรโลกรอบดวงอาทิตย์         = 149.6 x 109 เมตร    D2 = รัศมีของดวงอาทิตย์                      = 694,000,000 เมตร    F1 = F2 (D2/D1)2    F1 = (64 x 106 วัตต์/ตารางเมตร) (694 x 106 เมตร / 149.6 x 109 เมตร)2       = 1,370 วัตต์/ตารางเมตร






















ไม่มีความคิดเห็น:

แสดงความคิดเห็น